openwrt/target/linux/lantiq/files/drivers/net/ethernet/lantiq_vrx200.c
John Crispin 060b161ca6 cleanup patches
SVN-Revision: 32953
2012-08-03 08:53:02 +00:00

1359 lines
35 KiB
C

/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2011 John Crispin <blogic@openwrt.org>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <linux/in.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/phy.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <linux/ethtool.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <asm/checksum.h>
#include <lantiq_soc.h>
#include <xway_dma.h>
#include <lantiq_platform.h>
#define LTQ_SWITCH_BASE 0x1E108000
#define LTQ_SWITCH_CORE_BASE LTQ_SWITCH_BASE
#define LTQ_SWITCH_TOP_PDI_BASE LTQ_SWITCH_CORE_BASE
#define LTQ_SWITCH_BM_PDI_BASE (LTQ_SWITCH_CORE_BASE + 4 * 0x40)
#define LTQ_SWITCH_MAC_PDI_0_BASE (LTQ_SWITCH_CORE_BASE + 4 * 0x900)
#define LTQ_SWITCH_MAC_PDI_X_BASE(x) (LTQ_SWITCH_MAC_PDI_0_BASE + x * 0x30)
#define LTQ_SWITCH_TOPLEVEL_BASE (LTQ_SWITCH_BASE + 4 * 0xC40)
#define LTQ_SWITCH_MDIO_PDI_BASE (LTQ_SWITCH_TOPLEVEL_BASE)
#define LTQ_SWITCH_MII_PDI_BASE (LTQ_SWITCH_TOPLEVEL_BASE + 4 * 0x36)
#define LTQ_SWITCH_PMAC_PDI_BASE (LTQ_SWITCH_TOPLEVEL_BASE + 4 * 0x82)
#define LTQ_ETHSW_MAC_CTRL0_PADEN (1 << 8)
#define LTQ_ETHSW_MAC_CTRL0_FCS (1 << 7)
#define LTQ_ETHSW_MAC_CTRL1_SHORTPRE (1 << 8)
#define LTQ_ETHSW_MAC_CTRL2_MLEN (1 << 3)
#define LTQ_ETHSW_MAC_CTRL2_LCHKL (1 << 2)
#define LTQ_ETHSW_MAC_CTRL2_LCHKS_DIS 0
#define LTQ_ETHSW_MAC_CTRL2_LCHKS_UNTAG 1
#define LTQ_ETHSW_MAC_CTRL2_LCHKS_TAG 2
#define LTQ_ETHSW_MAC_CTRL6_RBUF_DLY_WP_SHIFT 9
#define LTQ_ETHSW_MAC_CTRL6_RXBUF_BYPASS (1 << 6)
#define LTQ_ETHSW_GLOB_CTRL_SE (1 << 15)
#define LTQ_ETHSW_MDC_CFG1_MCEN (1 << 8)
#define LTQ_ETHSW_PMAC_HD_CTL_FC (1 << 10)
#define LTQ_ETHSW_PMAC_HD_CTL_RC (1 << 4)
#define LTQ_ETHSW_PMAC_HD_CTL_AC (1 << 2)
#define ADVERTIZE_MPD (1 << 10)
#define MDIO_DEVAD_NONE (-1)
#define LTQ_ETH_RX_BUFFER_CNT PKTBUFSRX
#define LTQ_MDIO_DRV_NAME "ltq-mdio"
#define LTQ_ETH_DRV_NAME "ltq-eth"
#define LTQ_ETHSW_MAX_GMAC 1
#define LTQ_ETHSW_PMAC 1
#define ltq_setbits(a, set) \
ltq_w32(ltq_r32(a) | (set), a)
enum ltq_reset_modules {
LTQ_RESET_CORE,
LTQ_RESET_DMA,
LTQ_RESET_ETH,
LTQ_RESET_PHY,
LTQ_RESET_HARD,
LTQ_RESET_SOFT,
};
static inline void
dbg_ltq_writel(void *a, unsigned int b)
{
ltq_w32(b, a);
}
int ltq_reset_once(enum ltq_reset_modules module, ulong usec);
struct ltq_ethsw_mac_pdi_x_regs {
u32 pstat; /* Port status */
u32 pisr; /* Interrupt status */
u32 pier; /* Interrupt enable */
u32 ctrl_0; /* Control 0 */
u32 ctrl_1; /* Control 1 */
u32 ctrl_2; /* Control 2 */
u32 ctrl_3; /* Control 3 */
u32 ctrl_4; /* Control 4 */
u32 ctrl_5; /* Control 5 */
u32 ctrl_6; /* Control 6 */
u32 bufst; /* TX/RX buffer control */
u32 testen; /* Test enable */
};
struct ltq_ethsw_mac_pdi_regs {
struct ltq_ethsw_mac_pdi_x_regs mac[12];
};
struct ltq_ethsw_mdio_pdi_regs {
u32 glob_ctrl; /* Global control 0 */
u32 rsvd0[7];
u32 mdio_ctrl; /* MDIO control */
u32 mdio_read; /* MDIO read data */
u32 mdio_write; /* MDIO write data */
u32 mdc_cfg_0; /* MDC clock configuration 0 */
u32 mdc_cfg_1; /* MDC clock configuration 1 */
u32 rsvd[3];
u32 phy_addr_5; /* PHY address port 5 */
u32 phy_addr_4; /* PHY address port 4 */
u32 phy_addr_3; /* PHY address port 3 */
u32 phy_addr_2; /* PHY address port 2 */
u32 phy_addr_1; /* PHY address port 1 */
u32 phy_addr_0; /* PHY address port 0 */
u32 mdio_stat_0; /* MDIO PHY polling status port 0 */
u32 mdio_stat_1; /* MDIO PHY polling status port 1 */
u32 mdio_stat_2; /* MDIO PHY polling status port 2 */
u32 mdio_stat_3; /* MDIO PHY polling status port 3 */
u32 mdio_stat_4; /* MDIO PHY polling status port 4 */
u32 mdio_stat_5; /* MDIO PHY polling status port 5 */
};
struct ltq_ethsw_mii_pdi_regs {
u32 mii_cfg0; /* xMII port 0 configuration */
u32 pcdu0; /* Port 0 clock delay configuration */
u32 mii_cfg1; /* xMII port 1 configuration */
u32 pcdu1; /* Port 1 clock delay configuration */
u32 mii_cfg2; /* xMII port 2 configuration */
u32 rsvd0;
u32 mii_cfg3; /* xMII port 3 configuration */
u32 rsvd1;
u32 mii_cfg4; /* xMII port 4 configuration */
u32 rsvd2;
u32 mii_cfg5; /* xMII port 5 configuration */
u32 pcdu5; /* Port 5 clock delay configuration */
};
struct ltq_ethsw_pmac_pdi_regs {
u32 hd_ctl; /* PMAC header control */
u32 tl; /* PMAC type/length */
u32 sa1; /* PMAC source address 1 */
u32 sa2; /* PMAC source address 2 */
u32 sa3; /* PMAC source address 3 */
u32 da1; /* PMAC destination address 1 */
u32 da2; /* PMAC destination address 2 */
u32 da3; /* PMAC destination address 3 */
u32 vlan; /* PMAC VLAN */
u32 rx_ipg; /* PMAC interpacket gap in RX direction */
u32 st_etype; /* PMAC special tag ethertype */
u32 ewan; /* PMAC ethernet WAN group */
};
struct ltq_mdio_phy_addr_reg {
union {
struct {
unsigned rsvd:1;
unsigned lnkst:2; /* Link status control */
unsigned speed:2; /* Speed control */
unsigned fdup:2; /* Full duplex control */
unsigned fcontx:2; /* Flow control mode TX */
unsigned fconrx:2; /* Flow control mode RX */
unsigned addr:5; /* PHY address */
} bits;
u16 val;
};
};
enum ltq_mdio_phy_addr_lnkst {
LTQ_MDIO_PHY_ADDR_LNKST_AUTO = 0,
LTQ_MDIO_PHY_ADDR_LNKST_UP = 1,
LTQ_MDIO_PHY_ADDR_LNKST_DOWN = 2,
};
enum ltq_mdio_phy_addr_speed {
LTQ_MDIO_PHY_ADDR_SPEED_M10 = 0,
LTQ_MDIO_PHY_ADDR_SPEED_M100 = 1,
LTQ_MDIO_PHY_ADDR_SPEED_G1 = 2,
LTQ_MDIO_PHY_ADDR_SPEED_AUTO = 3,
};
enum ltq_mdio_phy_addr_fdup {
LTQ_MDIO_PHY_ADDR_FDUP_AUTO = 0,
LTQ_MDIO_PHY_ADDR_FDUP_ENABLE = 1,
LTQ_MDIO_PHY_ADDR_FDUP_DISABLE = 3,
};
enum ltq_mdio_phy_addr_fcon {
LTQ_MDIO_PHY_ADDR_FCON_AUTO = 0,
LTQ_MDIO_PHY_ADDR_FCON_ENABLE = 1,
LTQ_MDIO_PHY_ADDR_FCON_DISABLE = 3,
};
struct ltq_mii_mii_cfg_reg {
union {
struct {
unsigned res:1; /* Hardware reset */
unsigned en:1; /* xMII interface enable */
unsigned isol:1; /* xMII interface isolate */
unsigned ldclkdis:1; /* Link down clock disable */
unsigned rsvd:1;
unsigned crs:2; /* CRS sensitivity config */
unsigned rgmii_ibs:1; /* RGMII In Band status */
unsigned rmii:1; /* RMII ref clock direction */
unsigned miirate:3; /* xMII interface clock rate */
unsigned miimode:4; /* xMII interface mode */
} bits;
u16 val;
};
};
enum ltq_mii_mii_cfg_miirate {
LTQ_MII_MII_CFG_MIIRATE_M2P5 = 0,
LTQ_MII_MII_CFG_MIIRATE_M25 = 1,
LTQ_MII_MII_CFG_MIIRATE_M125 = 2,
LTQ_MII_MII_CFG_MIIRATE_M50 = 3,
LTQ_MII_MII_CFG_MIIRATE_AUTO = 4,
};
enum ltq_mii_mii_cfg_miimode {
LTQ_MII_MII_CFG_MIIMODE_MIIP = 0,
LTQ_MII_MII_CFG_MIIMODE_MIIM = 1,
LTQ_MII_MII_CFG_MIIMODE_RMIIP = 2,
LTQ_MII_MII_CFG_MIIMODE_RMIIM = 3,
LTQ_MII_MII_CFG_MIIMODE_RGMII = 4,
};
struct ltq_eth_priv {
struct ltq_dma_device *dma_dev;
struct mii_dev *bus;
struct eth_device *dev;
struct phy_device *phymap[LTQ_ETHSW_MAX_GMAC];
int rx_num;
};
enum ltq_mdio_mbusy {
LTQ_MDIO_MBUSY_IDLE = 0,
LTQ_MDIO_MBUSY_BUSY = 1,
};
enum ltq_mdio_op {
LTQ_MDIO_OP_WRITE = 1,
LTQ_MDIO_OP_READ = 2,
};
struct ltq_mdio_access {
union {
struct {
unsigned rsvd:3;
unsigned mbusy:1;
unsigned op:2;
unsigned phyad:5;
unsigned regad:5;
} bits;
u16 val;
};
};
enum LTQ_ETH_PORT_FLAGS {
LTQ_ETH_PORT_NONE = 0,
LTQ_ETH_PORT_PHY = 1,
LTQ_ETH_PORT_SWITCH = (1 << 1),
LTQ_ETH_PORT_MAC = (1 << 2),
};
struct ltq_eth_port_config {
u8 num;
u8 phy_addr;
u16 flags;
phy_interface_t phy_if;
};
struct ltq_eth_board_config {
const struct ltq_eth_port_config *ports;
int num_ports;
};
static const struct ltq_eth_port_config eth_port_config[] = {
/* GMAC0: external Lantiq PEF7071 10/100/1000 PHY for LAN port 0 */
{ 0, 0x0, LTQ_ETH_PORT_PHY, PHY_INTERFACE_MODE_RGMII },
/* GMAC1: external Lantiq PEF7071 10/100/1000 PHY for LAN port 1 */
{ 1, 0x1, LTQ_ETH_PORT_PHY, PHY_INTERFACE_MODE_RGMII },
};
static const struct ltq_eth_board_config board_config = {
.ports = eth_port_config,
.num_ports = ARRAY_SIZE(eth_port_config),
};
static struct ltq_ethsw_mac_pdi_regs *ltq_ethsw_mac_pdi_regs =
(struct ltq_ethsw_mac_pdi_regs *) CKSEG1ADDR(LTQ_SWITCH_MAC_PDI_0_BASE);
static struct ltq_ethsw_mdio_pdi_regs *ltq_ethsw_mdio_pdi_regs =
(struct ltq_ethsw_mdio_pdi_regs *) CKSEG1ADDR(LTQ_SWITCH_MDIO_PDI_BASE);
static struct ltq_ethsw_mii_pdi_regs *ltq_ethsw_mii_pdi_regs =
(struct ltq_ethsw_mii_pdi_regs *) CKSEG1ADDR(LTQ_SWITCH_MII_PDI_BASE);
static struct ltq_ethsw_pmac_pdi_regs *ltq_ethsw_pmac_pdi_regs =
(struct ltq_ethsw_pmac_pdi_regs *) CKSEG1ADDR(LTQ_SWITCH_PMAC_PDI_BASE);
#define MAX_DMA_CHAN 0x8
#define MAX_DMA_CRC_LEN 0x4
#define MAX_DMA_DATA_LEN 0x600
/* use 2 static channels for TX/RX
depending on the SoC we need to use different DMA channels for ethernet */
#define LTQ_ETOP_TX_CHANNEL 1
#define LTQ_ETOP_RX_CHANNEL 0
#define IS_TX(x) (x == LTQ_ETOP_TX_CHANNEL)
#define IS_RX(x) (x == LTQ_ETOP_RX_CHANNEL)
#define DRV_VERSION "1.0"
static void __iomem *ltq_vrx200_membase;
struct ltq_vrx200_chan {
int idx;
int tx_free;
struct net_device *netdev;
struct napi_struct napi;
struct ltq_dma_channel dma;
struct sk_buff *skb[LTQ_DESC_NUM];
};
struct ltq_vrx200_priv {
struct net_device *netdev;
struct ltq_eth_data *pldata;
struct resource *res;
struct mii_bus *mii_bus;
struct phy_device *phydev;
struct ltq_vrx200_chan ch[MAX_DMA_CHAN];
int tx_free[MAX_DMA_CHAN >> 1];
spinlock_t lock;
struct clk *clk_ppe;
};
static int ltq_vrx200_mdio_wr(struct mii_bus *bus, int phy_addr,
int phy_reg, u16 phy_data);
static int
ltq_vrx200_alloc_skb(struct ltq_vrx200_chan *ch)
{
ch->skb[ch->dma.desc] = dev_alloc_skb(MAX_DMA_DATA_LEN);
if (!ch->skb[ch->dma.desc])
return -ENOMEM;
ch->dma.desc_base[ch->dma.desc].addr = dma_map_single(NULL,
ch->skb[ch->dma.desc]->data, MAX_DMA_DATA_LEN,
DMA_FROM_DEVICE);
ch->dma.desc_base[ch->dma.desc].addr =
CPHYSADDR(ch->skb[ch->dma.desc]->data);
ch->dma.desc_base[ch->dma.desc].ctl =
LTQ_DMA_OWN | LTQ_DMA_RX_OFFSET(NET_IP_ALIGN) |
MAX_DMA_DATA_LEN;
skb_reserve(ch->skb[ch->dma.desc], NET_IP_ALIGN);
return 0;
}
static void
ltq_vrx200_hw_receive(struct ltq_vrx200_chan *ch)
{
struct ltq_vrx200_priv *priv = netdev_priv(ch->netdev);
struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
struct sk_buff *skb = ch->skb[ch->dma.desc];
int len = (desc->ctl & LTQ_DMA_SIZE_MASK) - MAX_DMA_CRC_LEN;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
if (ltq_vrx200_alloc_skb(ch)) {
netdev_err(ch->netdev,
"failed to allocate new rx buffer, stopping DMA\n");
ltq_dma_close(&ch->dma);
}
ch->dma.desc++;
ch->dma.desc %= LTQ_DESC_NUM;
spin_unlock_irqrestore(&priv->lock, flags);
skb_put(skb, len);
skb->dev = ch->netdev;
skb->protocol = eth_type_trans(skb, ch->netdev);
netif_receive_skb(skb);
}
static int
ltq_vrx200_poll_rx(struct napi_struct *napi, int budget)
{
struct ltq_vrx200_chan *ch = container_of(napi,
struct ltq_vrx200_chan, napi);
struct ltq_vrx200_priv *priv = netdev_priv(ch->netdev);
int rx = 0;
int complete = 0;
unsigned long flags;
while ((rx < budget) && !complete) {
struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) {
ltq_vrx200_hw_receive(ch);
rx++;
} else {
complete = 1;
}
}
if (complete || !rx) {
napi_complete(&ch->napi);
spin_lock_irqsave(&priv->lock, flags);
ltq_dma_ack_irq(&ch->dma);
spin_unlock_irqrestore(&priv->lock, flags);
}
return rx;
}
static int
ltq_vrx200_poll_tx(struct napi_struct *napi, int budget)
{
struct ltq_vrx200_chan *ch =
container_of(napi, struct ltq_vrx200_chan, napi);
struct ltq_vrx200_priv *priv = netdev_priv(ch->netdev);
struct netdev_queue *txq =
netdev_get_tx_queue(ch->netdev, ch->idx >> 1);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
while ((ch->dma.desc_base[ch->tx_free].ctl &
(LTQ_DMA_OWN | LTQ_DMA_C)) == LTQ_DMA_C) {
dev_kfree_skb_any(ch->skb[ch->tx_free]);
ch->skb[ch->tx_free] = NULL;
memset(&ch->dma.desc_base[ch->tx_free], 0,
sizeof(struct ltq_dma_desc));
ch->tx_free++;
ch->tx_free %= LTQ_DESC_NUM;
}
spin_unlock_irqrestore(&priv->lock, flags);
if (netif_tx_queue_stopped(txq))
netif_tx_start_queue(txq);
napi_complete(&ch->napi);
spin_lock_irqsave(&priv->lock, flags);
ltq_dma_ack_irq(&ch->dma);
spin_unlock_irqrestore(&priv->lock, flags);
return 1;
}
static irqreturn_t
ltq_vrx200_dma_irq(int irq, void *_priv)
{
struct ltq_vrx200_priv *priv = _priv;
int ch = irq - LTQ_DMA_ETOP;
napi_schedule(&priv->ch[ch].napi);
return IRQ_HANDLED;
}
static void
ltq_vrx200_free_channel(struct net_device *dev, struct ltq_vrx200_chan *ch)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
ltq_dma_free(&ch->dma);
if (ch->dma.irq)
free_irq(ch->dma.irq, priv);
if (IS_RX(ch->idx)) {
int desc;
for (desc = 0; desc < LTQ_DESC_NUM; desc++)
dev_kfree_skb_any(ch->skb[ch->dma.desc]);
}
}
static void
ltq_vrx200_hw_exit(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
int i;
clk_disable(priv->clk_ppe);
for (i = 0; i < MAX_DMA_CHAN; i++)
if (IS_TX(i) || IS_RX(i))
ltq_vrx200_free_channel(dev, &priv->ch[i]);
}
static void *ltq_eth_phy_addr_reg(int num)
{
switch (num) {
case 0:
return &ltq_ethsw_mdio_pdi_regs->phy_addr_0;
case 1:
return &ltq_ethsw_mdio_pdi_regs->phy_addr_1;
case 2:
return &ltq_ethsw_mdio_pdi_regs->phy_addr_2;
case 3:
return &ltq_ethsw_mdio_pdi_regs->phy_addr_3;
case 4:
return &ltq_ethsw_mdio_pdi_regs->phy_addr_4;
case 5:
return &ltq_ethsw_mdio_pdi_regs->phy_addr_5;
}
return NULL;
}
static void *ltq_eth_mii_cfg_reg(int num)
{
switch (num) {
case 0:
return &ltq_ethsw_mii_pdi_regs->mii_cfg0;
case 1:
return &ltq_ethsw_mii_pdi_regs->mii_cfg1;
case 2:
return &ltq_ethsw_mii_pdi_regs->mii_cfg2;
case 3:
return &ltq_ethsw_mii_pdi_regs->mii_cfg3;
case 4:
return &ltq_ethsw_mii_pdi_regs->mii_cfg4;
case 5:
return &ltq_ethsw_mii_pdi_regs->mii_cfg5;
}
return NULL;
}
static void ltq_eth_gmac_update(struct phy_device *phydev, int num)
{
struct ltq_mdio_phy_addr_reg phy_addr_reg;
struct ltq_mii_mii_cfg_reg mii_cfg_reg;
void *phy_addr = ltq_eth_phy_addr_reg(num);
void *mii_cfg = ltq_eth_mii_cfg_reg(num);
phy_addr_reg.val = ltq_r32(phy_addr);
mii_cfg_reg.val = ltq_r32(mii_cfg);
phy_addr_reg.bits.addr = phydev->addr;
if (phydev->link)
phy_addr_reg.bits.lnkst = LTQ_MDIO_PHY_ADDR_LNKST_UP;
else
phy_addr_reg.bits.lnkst = LTQ_MDIO_PHY_ADDR_LNKST_DOWN;
switch (phydev->speed) {
case SPEED_1000:
phy_addr_reg.bits.speed = LTQ_MDIO_PHY_ADDR_SPEED_G1;
mii_cfg_reg.bits.miirate = LTQ_MII_MII_CFG_MIIRATE_M125;
break;
case SPEED_100:
phy_addr_reg.bits.speed = LTQ_MDIO_PHY_ADDR_SPEED_M100;
switch (mii_cfg_reg.bits.miimode) {
case LTQ_MII_MII_CFG_MIIMODE_RMIIM:
case LTQ_MII_MII_CFG_MIIMODE_RMIIP:
mii_cfg_reg.bits.miirate = LTQ_MII_MII_CFG_MIIRATE_M50;
break;
default:
mii_cfg_reg.bits.miirate = LTQ_MII_MII_CFG_MIIRATE_M25;
break;
}
break;
default:
phy_addr_reg.bits.speed = LTQ_MDIO_PHY_ADDR_SPEED_M10;
mii_cfg_reg.bits.miirate = LTQ_MII_MII_CFG_MIIRATE_M2P5;
break;
}
if (phydev->duplex == DUPLEX_FULL)
phy_addr_reg.bits.fdup = LTQ_MDIO_PHY_ADDR_FDUP_ENABLE;
else
phy_addr_reg.bits.fdup = LTQ_MDIO_PHY_ADDR_FDUP_DISABLE;
dbg_ltq_writel(phy_addr, phy_addr_reg.val);
dbg_ltq_writel(mii_cfg, mii_cfg_reg.val);
udelay(1);
}
static void ltq_eth_port_config(struct ltq_vrx200_priv *priv,
const struct ltq_eth_port_config *port)
{
struct ltq_mii_mii_cfg_reg mii_cfg_reg;
void *mii_cfg = ltq_eth_mii_cfg_reg(port->num);
int setup_gpio = 0;
mii_cfg_reg.val = ltq_r32(mii_cfg);
switch (port->num) {
case 0: /* xMII0 */
case 1: /* xMII1 */
switch (port->phy_if) {
case PHY_INTERFACE_MODE_MII:
if (port->flags & LTQ_ETH_PORT_PHY)
/* MII MAC mode, connected to external PHY */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_MIIM;
else
/* MII PHY mode, connected to external MAC */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_MIIP;
setup_gpio = 1;
break;
case PHY_INTERFACE_MODE_RMII:
if (port->flags & LTQ_ETH_PORT_PHY)
/* RMII MAC mode, connected to external PHY */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_RMIIM;
else
/* RMII PHY mode, connected to external MAC */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_RMIIP;
setup_gpio = 1;
break;
case PHY_INTERFACE_MODE_RGMII:
/* RGMII MAC mode, connected to external PHY */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_RGMII;
setup_gpio = 1;
break;
default:
break;
}
break;
case 2: /* internal GPHY0 */
case 3: /* internal GPHY0 */
case 4: /* internal GPHY1 */
switch (port->phy_if) {
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_GMII:
/* MII MAC mode, connected to internal GPHY */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_MIIM;
setup_gpio = 1;
break;
default:
break;
}
break;
case 5: /* internal GPHY1 or xMII2 */
switch (port->phy_if) {
case PHY_INTERFACE_MODE_MII:
/* MII MAC mode, connected to internal GPHY */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_MIIM;
setup_gpio = 1;
break;
case PHY_INTERFACE_MODE_RGMII:
/* RGMII MAC mode, connected to external PHY */
mii_cfg_reg.bits.miimode =
LTQ_MII_MII_CFG_MIIMODE_RGMII;
setup_gpio = 1;
break;
default:
break;
}
break;
default:
break;
}
/* Enable MII interface */
mii_cfg_reg.bits.en = port->flags ? 1 : 0;
dbg_ltq_writel(mii_cfg, mii_cfg_reg.val);
}
static void ltq_eth_gmac_init(int num)
{
struct ltq_mdio_phy_addr_reg phy_addr_reg;
struct ltq_mii_mii_cfg_reg mii_cfg_reg;
void *phy_addr = ltq_eth_phy_addr_reg(num);
void *mii_cfg = ltq_eth_mii_cfg_reg(num);
struct ltq_ethsw_mac_pdi_x_regs *mac_pdi_regs;
mac_pdi_regs = &ltq_ethsw_mac_pdi_regs->mac[num];
/* Reset PHY status to link down */
phy_addr_reg.val = ltq_r32(phy_addr);
phy_addr_reg.bits.addr = num;
phy_addr_reg.bits.lnkst = LTQ_MDIO_PHY_ADDR_LNKST_DOWN;
phy_addr_reg.bits.speed = LTQ_MDIO_PHY_ADDR_SPEED_M10;
phy_addr_reg.bits.fdup = LTQ_MDIO_PHY_ADDR_FDUP_DISABLE;
dbg_ltq_writel(phy_addr, phy_addr_reg.val);
/* Reset and disable MII interface */
mii_cfg_reg.val = ltq_r32(mii_cfg);
mii_cfg_reg.bits.en = 0;
mii_cfg_reg.bits.res = 1;
mii_cfg_reg.bits.miirate = LTQ_MII_MII_CFG_MIIRATE_M2P5;
dbg_ltq_writel(mii_cfg, mii_cfg_reg.val);
/*
* Enable padding of short frames, enable frame checksum generation
* in transmit direction
*/
dbg_ltq_writel(&mac_pdi_regs->ctrl_0, LTQ_ETHSW_MAC_CTRL0_PADEN |
LTQ_ETHSW_MAC_CTRL0_FCS);
/* Set inter packet gap size to 12 bytes */
dbg_ltq_writel(&mac_pdi_regs->ctrl_1, 12);
/*
* Configure frame length checks:
* - allow jumbo frames
* - enable long length check
* - enable short length without VLAN tags
*/
dbg_ltq_writel(&mac_pdi_regs->ctrl_2, LTQ_ETHSW_MAC_CTRL2_MLEN |
LTQ_ETHSW_MAC_CTRL2_LCHKL |
LTQ_ETHSW_MAC_CTRL2_LCHKS_UNTAG);
}
static void ltq_eth_pmac_init(void)
{
struct ltq_ethsw_mac_pdi_x_regs *mac_pdi_regs;
mac_pdi_regs = &ltq_ethsw_mac_pdi_regs->mac[LTQ_ETHSW_PMAC];
/*
* Enable padding of short frames, enable frame checksum generation
* in transmit direction
*/
dbg_ltq_writel(&mac_pdi_regs->ctrl_0, LTQ_ETHSW_MAC_CTRL0_PADEN |
LTQ_ETHSW_MAC_CTRL0_FCS);
/*
* Configure frame length checks:
* - allow jumbo frames
* - enable long length check
* - enable short length without VLAN tags
*/
dbg_ltq_writel(&mac_pdi_regs->ctrl_2, LTQ_ETHSW_MAC_CTRL2_MLEN |
LTQ_ETHSW_MAC_CTRL2_LCHKL |
LTQ_ETHSW_MAC_CTRL2_LCHKS_UNTAG);
/*
* Apply workaround for buffer congestion:
* - shorten preambel to 1 byte
* - set minimum inter packet gap size to 7 bytes
* - enable receive buffer bypass mode
*/
dbg_ltq_writel(&mac_pdi_regs->ctrl_1, LTQ_ETHSW_MAC_CTRL1_SHORTPRE | 7);
dbg_ltq_writel(&mac_pdi_regs->ctrl_6,
(6 << LTQ_ETHSW_MAC_CTRL6_RBUF_DLY_WP_SHIFT) |
LTQ_ETHSW_MAC_CTRL6_RXBUF_BYPASS);
/* Set request assertion threshold to 8, IPG counter to 11 */
dbg_ltq_writel(&ltq_ethsw_pmac_pdi_regs->rx_ipg, 0x8B);
/*
* Configure frame header control:
* - enable reaction on pause frames (flow control)
* - remove CRC for packets from PMAC to DMA
* - add CRC for packets from DMA to PMAC
*/
dbg_ltq_writel(&ltq_ethsw_pmac_pdi_regs->hd_ctl, LTQ_ETHSW_PMAC_HD_CTL_FC |
/*LTQ_ETHSW_PMAC_HD_CTL_RC | */LTQ_ETHSW_PMAC_HD_CTL_AC);
}
static int
ltq_vrx200_hw_init(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
int err = 0;
int i;
netdev_info(dev, "setting up dma\n");
ltq_dma_init_port(DMA_PORT_ETOP);
netdev_info(dev, "setting up pmu\n");
clk_enable(priv->clk_ppe);
/* Reset ethernet and switch subsystems */
netdev_info(dev, "reset core\n");
ltq_reset_once(BIT(8), 10);
/* Enable switch macro */
ltq_setbits(&ltq_ethsw_mdio_pdi_regs->glob_ctrl,
LTQ_ETHSW_GLOB_CTRL_SE);
/* Disable MDIO auto-polling for all ports */
dbg_ltq_writel(&ltq_ethsw_mdio_pdi_regs->mdc_cfg_0, 0);
/*
* Enable and set MDIO management clock to 2.5 MHz. This is the
* maximum clock for FE PHYs.
* Formula for clock is:
*
* 50 MHz
* x = ----------- - 1
* 2 * f_MDC
*/
dbg_ltq_writel(&ltq_ethsw_mdio_pdi_regs->mdc_cfg_1,
LTQ_ETHSW_MDC_CFG1_MCEN | 9);
/* Init MAC connected to CPU */
ltq_eth_pmac_init();
/* Init MACs connected to external MII interfaces */
for (i = 0; i < LTQ_ETHSW_MAX_GMAC; i++)
ltq_eth_gmac_init(i);
for (i = 0; i < MAX_DMA_CHAN && !err; i++) {
int irq = LTQ_DMA_ETOP + i;
struct ltq_vrx200_chan *ch = &priv->ch[i];
ch->idx = ch->dma.nr = i;
if (IS_TX(i)) {
ltq_dma_alloc_tx(&ch->dma);
err = request_irq(irq, ltq_vrx200_dma_irq, IRQF_DISABLED,
"vrx200_tx", priv);
} else if (IS_RX(i)) {
ltq_dma_alloc_rx(&ch->dma);
for (ch->dma.desc = 0; ch->dma.desc < LTQ_DESC_NUM;
ch->dma.desc++)
if (ltq_vrx200_alloc_skb(ch))
err = -ENOMEM;
ch->dma.desc = 0;
err = request_irq(irq, ltq_vrx200_dma_irq, IRQF_DISABLED,
"vrx200_rx", priv);
}
if (!err)
ch->dma.irq = irq;
}
for (i = 0; i < board_config.num_ports; i++)
ltq_eth_port_config(priv, &board_config.ports[i]);
return err;
}
static void
ltq_vrx200_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strcpy(info->driver, "Lantiq ETOP");
strcpy(info->bus_info, "internal");
strcpy(info->version, DRV_VERSION);
}
static int
ltq_vrx200_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
return phy_ethtool_gset(priv->phydev, cmd);
}
static int
ltq_vrx200_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
return phy_ethtool_sset(priv->phydev, cmd);
}
static int
ltq_vrx200_nway_reset(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
return phy_start_aneg(priv->phydev);
}
static const struct ethtool_ops ltq_vrx200_ethtool_ops = {
.get_drvinfo = ltq_vrx200_get_drvinfo,
.get_settings = ltq_vrx200_get_settings,
.set_settings = ltq_vrx200_set_settings,
.nway_reset = ltq_vrx200_nway_reset,
};
static inline int ltq_mdio_poll(struct mii_bus *bus)
{
struct ltq_mdio_access acc;
unsigned cnt = 10000;
while (likely(cnt--)) {
acc.val = ltq_r32(&ltq_ethsw_mdio_pdi_regs->mdio_ctrl);
if (!acc.bits.mbusy)
return 0;
}
return 1;
}
static int
ltq_vrx200_mdio_wr(struct mii_bus *bus, int addr, int regnum, u16 val)
{
struct ltq_mdio_access acc;
int ret;
acc.val = 0;
acc.bits.mbusy = LTQ_MDIO_MBUSY_BUSY;
acc.bits.op = LTQ_MDIO_OP_WRITE;
acc.bits.phyad = addr;
acc.bits.regad = regnum;
ret = ltq_mdio_poll(bus);
if (ret)
return ret;
dbg_ltq_writel(&ltq_ethsw_mdio_pdi_regs->mdio_write, val);
dbg_ltq_writel(&ltq_ethsw_mdio_pdi_regs->mdio_ctrl, acc.val);
return 0;
}
static int
ltq_vrx200_mdio_rd(struct mii_bus *bus, int addr, int regnum)
{
struct ltq_mdio_access acc;
int ret;
acc.val = 0;
acc.bits.mbusy = LTQ_MDIO_MBUSY_BUSY;
acc.bits.op = LTQ_MDIO_OP_READ;
acc.bits.phyad = addr;
acc.bits.regad = regnum;
ret = ltq_mdio_poll(bus);
if (ret)
goto timeout;
dbg_ltq_writel(&ltq_ethsw_mdio_pdi_regs->mdio_ctrl, acc.val);
ret = ltq_mdio_poll(bus);
if (ret)
goto timeout;
ret = ltq_r32(&ltq_ethsw_mdio_pdi_regs->mdio_read);
return ret;
timeout:
return -1;
}
static void
ltq_vrx200_mdio_link(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
ltq_eth_gmac_update(priv->phydev, 0);
}
static int
ltq_vrx200_mdio_probe(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
struct phy_device *phydev = NULL;
int val;
phydev = priv->mii_bus->phy_map[0];
if (!phydev) {
netdev_err(dev, "no PHY found\n");
return -ENODEV;
}
phydev = phy_connect(dev, dev_name(&phydev->dev), &ltq_vrx200_mdio_link,
0, 0);
if (IS_ERR(phydev)) {
netdev_err(dev, "Could not attach to PHY\n");
return PTR_ERR(phydev);
}
phydev->supported &= (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg
| SUPPORTED_MII
| SUPPORTED_TP);
phydev->advertising = phydev->supported;
priv->phydev = phydev;
pr_info("%s: attached PHY [%s] (phy_addr=%s, irq=%d)\n",
dev->name, phydev->drv->name,
dev_name(&phydev->dev), phydev->irq);
val = ltq_vrx200_mdio_rd(priv->mii_bus, MDIO_DEVAD_NONE, MII_CTRL1000);
val |= ADVERTIZE_MPD;
ltq_vrx200_mdio_wr(priv->mii_bus, MDIO_DEVAD_NONE, MII_CTRL1000, val);
ltq_vrx200_mdio_wr(priv->mii_bus, 0, 0, 0x1040);
phy_start_aneg(phydev);
return 0;
}
static int
ltq_vrx200_mdio_init(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
int i;
int err;
priv->mii_bus = mdiobus_alloc();
if (!priv->mii_bus) {
netdev_err(dev, "failed to allocate mii bus\n");
err = -ENOMEM;
goto err_out;
}
priv->mii_bus->priv = dev;
priv->mii_bus->read = ltq_vrx200_mdio_rd;
priv->mii_bus->write = ltq_vrx200_mdio_wr;
priv->mii_bus->name = "ltq_mii";
snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%x", 0);
priv->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
if (!priv->mii_bus->irq) {
err = -ENOMEM;
goto err_out_free_mdiobus;
}
for (i = 0; i < PHY_MAX_ADDR; ++i)
priv->mii_bus->irq[i] = PHY_POLL;
if (mdiobus_register(priv->mii_bus)) {
err = -ENXIO;
goto err_out_free_mdio_irq;
}
if (ltq_vrx200_mdio_probe(dev)) {
err = -ENXIO;
goto err_out_unregister_bus;
}
return 0;
err_out_unregister_bus:
mdiobus_unregister(priv->mii_bus);
err_out_free_mdio_irq:
kfree(priv->mii_bus->irq);
err_out_free_mdiobus:
mdiobus_free(priv->mii_bus);
err_out:
return err;
}
static void
ltq_vrx200_mdio_cleanup(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
phy_disconnect(priv->phydev);
mdiobus_unregister(priv->mii_bus);
kfree(priv->mii_bus->irq);
mdiobus_free(priv->mii_bus);
}
void phy_dump(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
int i;
for (i = 0; i < 0x1F; i++) {
unsigned int val = ltq_vrx200_mdio_rd(priv->mii_bus, 0, i);
printk("%d %4X\n", i, val);
}
}
static int
ltq_vrx200_open(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
int i;
unsigned long flags;
for (i = 0; i < MAX_DMA_CHAN; i++) {
struct ltq_vrx200_chan *ch = &priv->ch[i];
if (!IS_TX(i) && (!IS_RX(i)))
continue;
napi_enable(&ch->napi);
spin_lock_irqsave(&priv->lock, flags);
ltq_dma_open(&ch->dma);
spin_unlock_irqrestore(&priv->lock, flags);
}
if (priv->phydev) {
phy_start(priv->phydev);
phy_dump(dev);
}
netif_tx_start_all_queues(dev);
return 0;
}
static int
ltq_vrx200_stop(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
int i;
unsigned long flags;
netif_tx_stop_all_queues(dev);
if (priv->phydev)
phy_stop(priv->phydev);
for (i = 0; i < MAX_DMA_CHAN; i++) {
struct ltq_vrx200_chan *ch = &priv->ch[i];
if (!IS_RX(i) && !IS_TX(i))
continue;
napi_disable(&ch->napi);
spin_lock_irqsave(&priv->lock, flags);
ltq_dma_close(&ch->dma);
spin_unlock_irqrestore(&priv->lock, flags);
}
return 0;
}
static int
ltq_vrx200_tx(struct sk_buff *skb, struct net_device *dev)
{
int queue = skb_get_queue_mapping(skb);
struct netdev_queue *txq = netdev_get_tx_queue(dev, queue);
struct ltq_vrx200_priv *priv = netdev_priv(dev);
struct ltq_vrx200_chan *ch = &priv->ch[(queue << 1) | 1];
struct ltq_dma_desc *desc = &ch->dma.desc_base[ch->dma.desc];
unsigned long flags;
u32 byte_offset;
int len;
len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
if ((desc->ctl & (LTQ_DMA_OWN | LTQ_DMA_C)) || ch->skb[ch->dma.desc]) {
netdev_err(dev, "tx ring full\n");
netif_tx_stop_queue(txq);
return NETDEV_TX_BUSY;
}
/* dma needs to start on a 16 byte aligned address */
byte_offset = CPHYSADDR(skb->data) % 16;
ch->skb[ch->dma.desc] = skb;
dev->trans_start = jiffies;
spin_lock_irqsave(&priv->lock, flags);
desc->addr = ((unsigned int) dma_map_single(NULL, skb->data, len,
DMA_TO_DEVICE)) - byte_offset;
wmb();
desc->ctl = LTQ_DMA_OWN | LTQ_DMA_SOP | LTQ_DMA_EOP |
LTQ_DMA_TX_OFFSET(byte_offset) | (len & LTQ_DMA_SIZE_MASK);
ch->dma.desc++;
ch->dma.desc %= LTQ_DESC_NUM;
spin_unlock_irqrestore(&priv->lock, flags);
if (ch->dma.desc_base[ch->dma.desc].ctl & LTQ_DMA_OWN)
netif_tx_stop_queue(txq);
return NETDEV_TX_OK;
}
static int
ltq_vrx200_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
/* TODO: mii-toll reports "No MII transceiver present!." ?!*/
return phy_mii_ioctl(priv->phydev, rq, cmd);
}
static u16
ltq_vrx200_select_queue(struct net_device *dev, struct sk_buff *skb)
{
/* we are currently only using the first queue */
return 0;
}
static int
ltq_vrx200_init(struct net_device *dev)
{
struct ltq_vrx200_priv *priv = netdev_priv(dev);
struct sockaddr mac;
int err;
ether_setup(dev);
dev->watchdog_timeo = 10 * HZ;
err = ltq_vrx200_hw_init(dev);
if (err)
goto err_hw;
memcpy(&mac, &priv->pldata->mac, sizeof(struct sockaddr));
if (!is_valid_ether_addr(mac.sa_data)) {
pr_warn("vrx200: invalid MAC, using random\n");
random_ether_addr(mac.sa_data);
}
eth_mac_addr(dev, &mac);
if (!ltq_vrx200_mdio_init(dev))
dev->ethtool_ops = &ltq_vrx200_ethtool_ops;
else
pr_warn("vrx200: mdio probe failed\n");;
return 0;
err_hw:
ltq_vrx200_hw_exit(dev);
return err;
}
static void
ltq_vrx200_tx_timeout(struct net_device *dev)
{
int err;
ltq_vrx200_hw_exit(dev);
err = ltq_vrx200_hw_init(dev);
if (err)
goto err_hw;
dev->trans_start = jiffies;
netif_wake_queue(dev);
return;
err_hw:
ltq_vrx200_hw_exit(dev);
netdev_err(dev, "failed to restart vrx200 after TX timeout\n");
}
static const struct net_device_ops ltq_eth_netdev_ops = {
.ndo_open = ltq_vrx200_open,
.ndo_stop = ltq_vrx200_stop,
.ndo_start_xmit = ltq_vrx200_tx,
.ndo_change_mtu = eth_change_mtu,
.ndo_do_ioctl = ltq_vrx200_ioctl,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_select_queue = ltq_vrx200_select_queue,
.ndo_init = ltq_vrx200_init,
.ndo_tx_timeout = ltq_vrx200_tx_timeout,
};
static int __devinit
ltq_vrx200_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct ltq_vrx200_priv *priv;
struct resource *res;
int err;
int i;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "failed to get vrx200 resource\n");
err = -ENOENT;
goto err_out;
}
res = devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), dev_name(&pdev->dev));
if (!res) {
dev_err(&pdev->dev, "failed to request vrx200 resource\n");
err = -EBUSY;
goto err_out;
}
ltq_vrx200_membase = devm_ioremap_nocache(&pdev->dev,
res->start, resource_size(res));
if (!ltq_vrx200_membase) {
dev_err(&pdev->dev, "failed to remap vrx200 engine %d\n",
pdev->id);
err = -ENOMEM;
goto err_out;
}
if (ltq_gpio_request(&pdev->dev, 42, 2, 1, "MDIO") ||
ltq_gpio_request(&pdev->dev, 43, 2, 1, "MDC")) {
dev_err(&pdev->dev, "failed to request MDIO gpios\n");
err = -EBUSY;
goto err_out;
}
dev = alloc_etherdev_mq(sizeof(struct ltq_vrx200_priv), 4);
strcpy(dev->name, "eth%d");
dev->netdev_ops = &ltq_eth_netdev_ops;
priv = netdev_priv(dev);
priv->res = res;
priv->pldata = dev_get_platdata(&pdev->dev);
priv->netdev = dev;
priv->clk_ppe = clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->clk_ppe))
return PTR_ERR(priv->clk_ppe);
spin_lock_init(&priv->lock);
for (i = 0; i < MAX_DMA_CHAN; i++) {
if (IS_TX(i))
netif_napi_add(dev, &priv->ch[i].napi,
ltq_vrx200_poll_tx, 8);
else if (IS_RX(i))
netif_napi_add(dev, &priv->ch[i].napi,
ltq_vrx200_poll_rx, 32);
priv->ch[i].netdev = dev;
}
err = register_netdev(dev);
if (err)
goto err_free;
platform_set_drvdata(pdev, dev);
return 0;
err_free:
kfree(dev);
err_out:
return err;
}
static int __devexit
ltq_vrx200_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
if (dev) {
netif_tx_stop_all_queues(dev);
ltq_vrx200_hw_exit(dev);
ltq_vrx200_mdio_cleanup(dev);
unregister_netdev(dev);
}
return 0;
}
static struct platform_driver ltq_mii_driver = {
.probe = ltq_vrx200_probe,
.remove = __devexit_p(ltq_vrx200_remove),
.driver = {
.name = "ltq_vrx200",
.owner = THIS_MODULE,
},
};
module_platform_driver(ltq_mii_driver);
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Lantiq SoC ETOP");
MODULE_LICENSE("GPL");