e1e65079b4
SVN-Revision: 13288
1376 lines
43 KiB
C
1376 lines
43 KiB
C
/***************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2007,2008 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called LICENSE.GPL.
|
|
*
|
|
* Contact Information:
|
|
* Intel Corporation
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2007,2008 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*
|
|
* version: Security.L.1.0.130
|
|
*
|
|
***************************************************************************/
|
|
|
|
#include "icp_ocf.h"
|
|
|
|
/*The following define values (containing the word 'INDEX') are used to find
|
|
the index of each input buffer of the crypto_kop struct (see OCF cryptodev.h).
|
|
These values were found through analysis of the OCF OpenSSL patch. If the
|
|
calling program uses different input buffer positions, these defines will have
|
|
to be changed.*/
|
|
|
|
/*DIFFIE HELLMAN buffer index values*/
|
|
#define ICP_DH_KRP_PARAM_PRIME_INDEX (0)
|
|
#define ICP_DH_KRP_PARAM_BASE_INDEX (1)
|
|
#define ICP_DH_KRP_PARAM_PRIVATE_VALUE_INDEX (2)
|
|
#define ICP_DH_KRP_PARAM_RESULT_INDEX (3)
|
|
|
|
/*MOD EXP buffer index values*/
|
|
#define ICP_MOD_EXP_KRP_PARAM_BASE_INDEX (0)
|
|
#define ICP_MOD_EXP_KRP_PARAM_EXPONENT_INDEX (1)
|
|
#define ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX (2)
|
|
#define ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX (3)
|
|
|
|
#define SINGLE_BYTE_VALUE (4)
|
|
|
|
/*MOD EXP CRT buffer index values*/
|
|
#define ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_P_INDEX (0)
|
|
#define ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_Q_INDEX (1)
|
|
#define ICP_MOD_EXP_CRT_KRP_PARAM_I_INDEX (2)
|
|
#define ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DP_INDEX (3)
|
|
#define ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DQ_INDEX (4)
|
|
#define ICP_MOD_EXP_CRT_KRP_PARAM_COEFF_QINV_INDEX (5)
|
|
#define ICP_MOD_EXP_CRT_KRP_PARAM_RESULT_INDEX (6)
|
|
|
|
/*DSA sign buffer index values*/
|
|
#define ICP_DSA_SIGN_KRP_PARAM_DGST_INDEX (0)
|
|
#define ICP_DSA_SIGN_KRP_PARAM_PRIME_P_INDEX (1)
|
|
#define ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX (2)
|
|
#define ICP_DSA_SIGN_KRP_PARAM_G_INDEX (3)
|
|
#define ICP_DSA_SIGN_KRP_PARAM_X_INDEX (4)
|
|
#define ICP_DSA_SIGN_KRP_PARAM_R_RESULT_INDEX (5)
|
|
#define ICP_DSA_SIGN_KRP_PARAM_S_RESULT_INDEX (6)
|
|
|
|
/*DSA verify buffer index values*/
|
|
#define ICP_DSA_VERIFY_KRP_PARAM_DGST_INDEX (0)
|
|
#define ICP_DSA_VERIFY_KRP_PARAM_PRIME_P_INDEX (1)
|
|
#define ICP_DSA_VERIFY_KRP_PARAM_PRIME_Q_INDEX (2)
|
|
#define ICP_DSA_VERIFY_KRP_PARAM_G_INDEX (3)
|
|
#define ICP_DSA_VERIFY_KRP_PARAM_PUBKEY_INDEX (4)
|
|
#define ICP_DSA_VERIFY_KRP_PARAM_SIG_R_INDEX (5)
|
|
#define ICP_DSA_VERIFY_KRP_PARAM_SIG_S_INDEX (6)
|
|
|
|
/*DSA sign prime Q vs random number K size check values*/
|
|
#define DONT_RUN_LESS_THAN_CHECK (0)
|
|
#define FAIL_A_IS_GREATER_THAN_B (1)
|
|
#define FAIL_A_IS_EQUAL_TO_B (1)
|
|
#define SUCCESS_A_IS_LESS_THAN_B (0)
|
|
#define DSA_SIGN_RAND_GEN_VAL_CHECK_MAX_ITERATIONS (500)
|
|
|
|
/* We need to set a cryptokp success value just in case it is set or allocated
|
|
and not set to zero outside of this module */
|
|
#define CRYPTO_OP_SUCCESS (0)
|
|
|
|
static int icp_ocfDrvDHComputeKey(struct cryptkop *krp);
|
|
|
|
static int icp_ocfDrvModExp(struct cryptkop *krp);
|
|
|
|
static int icp_ocfDrvModExpCRT(struct cryptkop *krp);
|
|
|
|
static int
|
|
icp_ocfDrvCheckALessThanB(CpaFlatBuffer * pK, CpaFlatBuffer * pQ, int *doCheck);
|
|
|
|
static int icp_ocfDrvDsaSign(struct cryptkop *krp);
|
|
|
|
static int icp_ocfDrvDsaVerify(struct cryptkop *krp);
|
|
|
|
static void
|
|
icp_ocfDrvDhP1CallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData, CpaFlatBuffer * pLocalOctetStringPV);
|
|
|
|
static void
|
|
icp_ocfDrvModExpCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData, CpaFlatBuffer * pResult);
|
|
|
|
static void
|
|
icp_ocfDrvModExpCRTCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData, CpaFlatBuffer * pOutputData);
|
|
|
|
static void
|
|
icp_ocfDrvDsaVerifyCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData, CpaBoolean verifyStatus);
|
|
|
|
static void
|
|
icp_ocfDrvDsaRSSignCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData,
|
|
CpaBoolean protocolStatus,
|
|
CpaFlatBuffer * pR, CpaFlatBuffer * pS);
|
|
|
|
/* Name : icp_ocfDrvPkeProcess
|
|
*
|
|
* Description : This function will choose which PKE process to follow
|
|
* based on the input arguments
|
|
*/
|
|
int icp_ocfDrvPkeProcess(device_t dev, struct cryptkop *krp, int hint)
|
|
{
|
|
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
|
|
|
if (NULL == krp) {
|
|
DPRINTK("%s(): Invalid input parameters, cryptkop = %p\n",
|
|
__FUNCTION__, krp);
|
|
return EINVAL;
|
|
}
|
|
|
|
if (CPA_TRUE == atomic_read(&icp_ocfDrvIsExiting)) {
|
|
krp->krp_status = ECANCELED;
|
|
return ECANCELED;
|
|
}
|
|
|
|
switch (krp->krp_op) {
|
|
case CRK_DH_COMPUTE_KEY:
|
|
DPRINTK("%s() doing DH_COMPUTE_KEY\n", __FUNCTION__);
|
|
lacStatus = icp_ocfDrvDHComputeKey(krp);
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): icp_ocfDrvDHComputeKey failed "
|
|
"(%d).\n", __FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
return ECANCELED;
|
|
}
|
|
|
|
break;
|
|
|
|
case CRK_MOD_EXP:
|
|
DPRINTK("%s() doing MOD_EXP \n", __FUNCTION__);
|
|
lacStatus = icp_ocfDrvModExp(krp);
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): icp_ocfDrvModExp failed (%d).\n",
|
|
__FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
return ECANCELED;
|
|
}
|
|
|
|
break;
|
|
|
|
case CRK_MOD_EXP_CRT:
|
|
DPRINTK("%s() doing MOD_EXP_CRT \n", __FUNCTION__);
|
|
lacStatus = icp_ocfDrvModExpCRT(krp);
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): icp_ocfDrvModExpCRT "
|
|
"failed (%d).\n", __FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
return ECANCELED;
|
|
}
|
|
|
|
break;
|
|
|
|
case CRK_DSA_SIGN:
|
|
DPRINTK("%s() doing DSA_SIGN \n", __FUNCTION__);
|
|
lacStatus = icp_ocfDrvDsaSign(krp);
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): icp_ocfDrvDsaSign "
|
|
"failed (%d).\n", __FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
return ECANCELED;
|
|
}
|
|
|
|
break;
|
|
|
|
case CRK_DSA_VERIFY:
|
|
DPRINTK("%s() doing DSA_VERIFY \n", __FUNCTION__);
|
|
lacStatus = icp_ocfDrvDsaVerify(krp);
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): icp_ocfDrvDsaVerify "
|
|
"failed (%d).\n", __FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
return ECANCELED;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
EPRINTK("%s(): Asymettric function not "
|
|
"supported (%d).\n", __FUNCTION__, krp->krp_op);
|
|
krp->krp_status = EOPNOTSUPP;
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
return ICP_OCF_DRV_STATUS_SUCCESS;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvSwapBytes
|
|
*
|
|
* Description : This function is used to swap the byte order of a buffer.
|
|
* It has been seen that in general we are passed little endian byte order
|
|
* buffers, but LAC only accepts big endian byte order buffers.
|
|
*/
|
|
static void inline
|
|
icp_ocfDrvSwapBytes(u_int8_t * num, u_int32_t buff_len_bytes)
|
|
{
|
|
|
|
int i;
|
|
u_int8_t *end_ptr;
|
|
u_int8_t hold_val;
|
|
|
|
end_ptr = num + (buff_len_bytes - 1);
|
|
buff_len_bytes = buff_len_bytes >> 1;
|
|
for (i = 0; i < buff_len_bytes; i++) {
|
|
hold_val = *num;
|
|
*num = *end_ptr;
|
|
num++;
|
|
*end_ptr = hold_val;
|
|
end_ptr--;
|
|
}
|
|
}
|
|
|
|
/* Name : icp_ocfDrvDHComputeKey
|
|
*
|
|
* Description : This function will map Diffie Hellman calls from OCF
|
|
* to the LAC API. OCF uses this function for Diffie Hellman Phase1 and
|
|
* Phase2. LAC has a separate Diffie Hellman Phase2 call, however both phases
|
|
* break down to a modular exponentiation.
|
|
*/
|
|
static int icp_ocfDrvDHComputeKey(struct cryptkop *krp)
|
|
{
|
|
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
|
void *callbackTag = NULL;
|
|
CpaCyDhPhase1KeyGenOpData *pPhase1OpData = NULL;
|
|
CpaFlatBuffer *pLocalOctetStringPV = NULL;
|
|
uint32_t dh_prime_len_bytes = 0, dh_prime_len_bits = 0;
|
|
|
|
/* Input checks - check prime is a multiple of 8 bits to allow for
|
|
allocation later */
|
|
dh_prime_len_bits =
|
|
(krp->krp_param[ICP_DH_KRP_PARAM_PRIME_INDEX].crp_nbits);
|
|
|
|
/* LAC can reject prime lengths based on prime key sizes, we just
|
|
need to make sure we can allocate space for the base and
|
|
exponent buffers correctly */
|
|
if ((dh_prime_len_bits % NUM_BITS_IN_BYTE) != 0) {
|
|
APRINTK("%s(): Warning Prime number buffer size is not a "
|
|
"multiple of 8 bits\n", __FUNCTION__);
|
|
}
|
|
|
|
/* Result storage space should be the same size as the prime as this
|
|
value can take up the same amount of storage space */
|
|
if (dh_prime_len_bits !=
|
|
krp->krp_param[ICP_DH_KRP_PARAM_RESULT_INDEX].crp_nbits) {
|
|
DPRINTK("%s(): Return Buffer must be the same size "
|
|
"as the Prime buffer\n", __FUNCTION__);
|
|
krp->krp_status = EINVAL;
|
|
return EINVAL;
|
|
}
|
|
/* Switch to size in bytes */
|
|
BITS_TO_BYTES(dh_prime_len_bytes, dh_prime_len_bits);
|
|
|
|
callbackTag = krp;
|
|
|
|
pPhase1OpData = kmem_cache_zalloc(drvDH_zone, GFP_KERNEL);
|
|
if (NULL == pPhase1OpData) {
|
|
APRINTK("%s():Failed to get memory for key gen data\n",
|
|
__FUNCTION__);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
pLocalOctetStringPV = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL);
|
|
if (NULL == pLocalOctetStringPV) {
|
|
APRINTK("%s():Failed to get memory for pLocalOctetStringPV\n",
|
|
__FUNCTION__);
|
|
kmem_cache_free(drvDH_zone, pPhase1OpData);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* Link parameters */
|
|
pPhase1OpData->primeP.pData =
|
|
krp->krp_param[ICP_DH_KRP_PARAM_PRIME_INDEX].crp_p;
|
|
|
|
pPhase1OpData->primeP.dataLenInBytes = dh_prime_len_bytes;
|
|
|
|
icp_ocfDrvSwapBytes(pPhase1OpData->primeP.pData, dh_prime_len_bytes);
|
|
|
|
pPhase1OpData->baseG.pData =
|
|
krp->krp_param[ICP_DH_KRP_PARAM_BASE_INDEX].crp_p;
|
|
|
|
BITS_TO_BYTES(pPhase1OpData->baseG.dataLenInBytes,
|
|
krp->krp_param[ICP_DH_KRP_PARAM_BASE_INDEX].crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(pPhase1OpData->baseG.pData,
|
|
pPhase1OpData->baseG.dataLenInBytes);
|
|
|
|
pPhase1OpData->privateValueX.pData =
|
|
krp->krp_param[ICP_DH_KRP_PARAM_PRIVATE_VALUE_INDEX].crp_p;
|
|
|
|
BITS_TO_BYTES(pPhase1OpData->privateValueX.dataLenInBytes,
|
|
krp->krp_param[ICP_DH_KRP_PARAM_PRIVATE_VALUE_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(pPhase1OpData->privateValueX.pData,
|
|
pPhase1OpData->privateValueX.dataLenInBytes);
|
|
|
|
/* Output parameters */
|
|
pLocalOctetStringPV->pData =
|
|
krp->krp_param[ICP_DH_KRP_PARAM_RESULT_INDEX].crp_p;
|
|
|
|
BITS_TO_BYTES(pLocalOctetStringPV->dataLenInBytes,
|
|
krp->krp_param[ICP_DH_KRP_PARAM_RESULT_INDEX].crp_nbits);
|
|
|
|
lacStatus = cpaCyDhKeyGenPhase1(CPA_INSTANCE_HANDLE_SINGLE,
|
|
icp_ocfDrvDhP1CallBack,
|
|
callbackTag, pPhase1OpData,
|
|
pLocalOctetStringPV);
|
|
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): DH Phase 1 Key Gen failed (%d).\n",
|
|
__FUNCTION__, lacStatus);
|
|
icp_ocfDrvFreeFlatBuffer(pLocalOctetStringPV);
|
|
kmem_cache_free(drvDH_zone, pPhase1OpData);
|
|
}
|
|
|
|
return lacStatus;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvModExp
|
|
*
|
|
* Description : This function will map ordinary Modular Exponentiation calls
|
|
* from OCF to the LAC API.
|
|
*
|
|
*/
|
|
static int icp_ocfDrvModExp(struct cryptkop *krp)
|
|
{
|
|
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
|
void *callbackTag = NULL;
|
|
CpaCyLnModExpOpData *pModExpOpData = NULL;
|
|
CpaFlatBuffer *pResult = NULL;
|
|
|
|
if ((krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].crp_nbits %
|
|
NUM_BITS_IN_BYTE) != 0) {
|
|
DPRINTK("%s(): Warning - modulus buffer size (%d) is not a "
|
|
"multiple of 8 bits\n", __FUNCTION__,
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].
|
|
crp_nbits);
|
|
}
|
|
|
|
/* Result storage space should be the same size as the prime as this
|
|
value can take up the same amount of storage space */
|
|
if (krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].crp_nbits >
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX].crp_nbits) {
|
|
APRINTK("%s(): Return Buffer size must be the same or"
|
|
" greater than the Modulus buffer\n", __FUNCTION__);
|
|
krp->krp_status = EINVAL;
|
|
return EINVAL;
|
|
}
|
|
|
|
callbackTag = krp;
|
|
|
|
pModExpOpData = kmem_cache_zalloc(drvLnModExp_zone, GFP_KERNEL);
|
|
if (NULL == pModExpOpData) {
|
|
APRINTK("%s():Failed to get memory for key gen data\n",
|
|
__FUNCTION__);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
pResult = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL);
|
|
if (NULL == pResult) {
|
|
APRINTK("%s():Failed to get memory for ModExp result\n",
|
|
__FUNCTION__);
|
|
kmem_cache_free(drvLnModExp_zone, pModExpOpData);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* Link parameters */
|
|
pModExpOpData->modulus.pData =
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].crp_p;
|
|
BITS_TO_BYTES(pModExpOpData->modulus.dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_MODULUS_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(pModExpOpData->modulus.pData,
|
|
pModExpOpData->modulus.dataLenInBytes);
|
|
|
|
/*OCF patch to Openswan Pluto regularly sends the base value as 2
|
|
bits in size. In this case, it has been found it is better to
|
|
use the base size memory space as the input buffer (if the number
|
|
is in bits is less than a byte, the number of bits is the input
|
|
value) */
|
|
if (krp->krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_nbits <
|
|
NUM_BITS_IN_BYTE) {
|
|
DPRINTK("%s : base is small (%d)\n", __FUNCTION__, krp->
|
|
krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_nbits);
|
|
pModExpOpData->base.dataLenInBytes = SINGLE_BYTE_VALUE;
|
|
pModExpOpData->base.pData =
|
|
(uint8_t *) & (krp->
|
|
krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].
|
|
crp_nbits);
|
|
*((uint32_t *) pModExpOpData->base.pData) =
|
|
htonl(*((uint32_t *) pModExpOpData->base.pData));
|
|
|
|
} else {
|
|
|
|
DPRINTK("%s : base is big (%d)\n", __FUNCTION__, krp->
|
|
krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_nbits);
|
|
pModExpOpData->base.pData =
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].crp_p;
|
|
BITS_TO_BYTES(pModExpOpData->base.dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(pModExpOpData->base.pData,
|
|
pModExpOpData->base.dataLenInBytes);
|
|
}
|
|
|
|
pModExpOpData->exponent.pData =
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_EXPONENT_INDEX].crp_p;
|
|
BITS_TO_BYTES(pModExpOpData->exponent.dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_EXPONENT_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(pModExpOpData->exponent.pData,
|
|
pModExpOpData->exponent.dataLenInBytes);
|
|
/* Output parameters */
|
|
pResult->pData =
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX].crp_p,
|
|
BITS_TO_BYTES(pResult->dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_KRP_PARAM_RESULT_INDEX].
|
|
crp_nbits);
|
|
|
|
lacStatus = cpaCyLnModExp(CPA_INSTANCE_HANDLE_SINGLE,
|
|
icp_ocfDrvModExpCallBack,
|
|
callbackTag, pModExpOpData, pResult);
|
|
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): Mod Exp Operation failed (%d).\n",
|
|
__FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
icp_ocfDrvFreeFlatBuffer(pResult);
|
|
kmem_cache_free(drvLnModExp_zone, pModExpOpData);
|
|
}
|
|
|
|
return lacStatus;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvModExpCRT
|
|
*
|
|
* Description : This function will map ordinary Modular Exponentiation Chinese
|
|
* Remainder Theorem implementaion calls from OCF to the LAC API.
|
|
*
|
|
* Note : Mod Exp CRT for this driver is accelerated through LAC RSA type 2
|
|
* decrypt operation. Therefore P and Q input values must always be prime
|
|
* numbers. Although basic primality checks are done in LAC, it is up to the
|
|
* user to do any correct prime number checking before passing the inputs.
|
|
*/
|
|
|
|
static int icp_ocfDrvModExpCRT(struct cryptkop *krp)
|
|
{
|
|
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
|
CpaCyRsaDecryptOpData *rsaDecryptOpData = NULL;
|
|
void *callbackTag = NULL;
|
|
CpaFlatBuffer *pOutputData = NULL;
|
|
|
|
/*Parameter input checks are all done by LAC, no need to repeat
|
|
them here. */
|
|
callbackTag = krp;
|
|
|
|
rsaDecryptOpData = kmem_cache_zalloc(drvRSADecrypt_zone, GFP_KERNEL);
|
|
if (NULL == rsaDecryptOpData) {
|
|
APRINTK("%s():Failed to get memory"
|
|
" for MOD EXP CRT Op data struct\n", __FUNCTION__);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey
|
|
= kmem_cache_zalloc(drvRSAPrivateKey_zone, GFP_KERNEL);
|
|
if (NULL == rsaDecryptOpData->pRecipientPrivateKey) {
|
|
APRINTK("%s():Failed to get memory for MOD EXP CRT"
|
|
" private key values struct\n", __FUNCTION__);
|
|
kmem_cache_free(drvRSADecrypt_zone, rsaDecryptOpData);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
version = CPA_CY_RSA_VERSION_TWO_PRIME;
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRepType = CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_2;
|
|
|
|
pOutputData = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL);
|
|
if (NULL == pOutputData) {
|
|
APRINTK("%s():Failed to get memory"
|
|
" for MOD EXP CRT output data\n", __FUNCTION__);
|
|
kmem_cache_free(drvRSAPrivateKey_zone,
|
|
rsaDecryptOpData->pRecipientPrivateKey);
|
|
kmem_cache_free(drvRSADecrypt_zone, rsaDecryptOpData);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
version = CPA_CY_RSA_VERSION_TWO_PRIME;
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRepType = CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_2;
|
|
|
|
/* Link parameters */
|
|
rsaDecryptOpData->inputData.pData =
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_I_INDEX].crp_p;
|
|
BITS_TO_BYTES(rsaDecryptOpData->inputData.dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_I_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(rsaDecryptOpData->inputData.pData,
|
|
rsaDecryptOpData->inputData.dataLenInBytes);
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2.prime1P.pData =
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_P_INDEX].crp_p;
|
|
BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2.
|
|
prime1P.dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_P_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.prime1P.pData,
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.prime1P.dataLenInBytes);
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2.prime2Q.pData =
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_Q_INDEX].crp_p;
|
|
BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2.
|
|
prime2Q.dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_PRIME_Q_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.prime2Q.pData,
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.prime2Q.dataLenInBytes);
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.exponent1Dp.pData =
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DP_INDEX].crp_p;
|
|
BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->privateKeyRep2.
|
|
exponent1Dp.dataLenInBytes,
|
|
krp->
|
|
krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DP_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.exponent1Dp.pData,
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.exponent1Dp.dataLenInBytes);
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.exponent2Dq.pData =
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DQ_INDEX].crp_p;
|
|
BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.exponent2Dq.dataLenInBytes,
|
|
krp->
|
|
krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_EXPONENT_DQ_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.exponent2Dq.pData,
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.exponent2Dq.dataLenInBytes);
|
|
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.coefficientQInv.pData =
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_COEFF_QINV_INDEX].crp_p;
|
|
BITS_TO_BYTES(rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.coefficientQInv.dataLenInBytes,
|
|
krp->
|
|
krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_COEFF_QINV_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.coefficientQInv.pData,
|
|
rsaDecryptOpData->pRecipientPrivateKey->
|
|
privateKeyRep2.coefficientQInv.dataLenInBytes);
|
|
|
|
/* Output Parameter */
|
|
pOutputData->pData =
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_RESULT_INDEX].crp_p;
|
|
BITS_TO_BYTES(pOutputData->dataLenInBytes,
|
|
krp->krp_param[ICP_MOD_EXP_CRT_KRP_PARAM_RESULT_INDEX].
|
|
crp_nbits);
|
|
|
|
lacStatus = cpaCyRsaDecrypt(CPA_INSTANCE_HANDLE_SINGLE,
|
|
icp_ocfDrvModExpCRTCallBack,
|
|
callbackTag, rsaDecryptOpData, pOutputData);
|
|
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): Mod Exp CRT Operation failed (%d).\n",
|
|
__FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
icp_ocfDrvFreeFlatBuffer(pOutputData);
|
|
kmem_cache_free(drvRSAPrivateKey_zone,
|
|
rsaDecryptOpData->pRecipientPrivateKey);
|
|
kmem_cache_free(drvRSADecrypt_zone, rsaDecryptOpData);
|
|
}
|
|
|
|
return lacStatus;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvCheckALessThanB
|
|
*
|
|
* Description : This function will check whether the first argument is less
|
|
* than the second. It is used to check whether the DSA RS sign Random K
|
|
* value is less than the Prime Q value (as defined in the specification)
|
|
*
|
|
*/
|
|
static int
|
|
icp_ocfDrvCheckALessThanB(CpaFlatBuffer * pK, CpaFlatBuffer * pQ, int *doCheck)
|
|
{
|
|
|
|
uint8_t *MSB_K = pK->pData;
|
|
uint8_t *MSB_Q = pQ->pData;
|
|
uint32_t buffer_lengths_in_bytes = pQ->dataLenInBytes;
|
|
|
|
if (DONT_RUN_LESS_THAN_CHECK == *doCheck) {
|
|
return FAIL_A_IS_GREATER_THAN_B;
|
|
}
|
|
|
|
/*Check MSBs
|
|
if A == B, check next MSB
|
|
if A > B, return A_IS_GREATER_THAN_B
|
|
if A < B, return A_IS_LESS_THAN_B (success)
|
|
*/
|
|
while (*MSB_K == *MSB_Q) {
|
|
MSB_K++;
|
|
MSB_Q++;
|
|
|
|
buffer_lengths_in_bytes--;
|
|
if (0 == buffer_lengths_in_bytes) {
|
|
DPRINTK("%s() Buffers have equal value!!\n",
|
|
__FUNCTION__);
|
|
return FAIL_A_IS_EQUAL_TO_B;
|
|
}
|
|
|
|
}
|
|
|
|
if (*MSB_K < *MSB_Q) {
|
|
return SUCCESS_A_IS_LESS_THAN_B;
|
|
} else {
|
|
return FAIL_A_IS_GREATER_THAN_B;
|
|
}
|
|
|
|
}
|
|
|
|
/* Name : icp_ocfDrvDsaSign
|
|
*
|
|
* Description : This function will map DSA RS Sign from OCF to the LAC API.
|
|
*
|
|
* NOTE: From looking at OCF patch to OpenSSL and even the number of input
|
|
* parameters, OCF expects us to generate the random seed value. This value
|
|
* is generated and passed to LAC, however the number is discared in the
|
|
* callback and not returned to the user.
|
|
*/
|
|
static int icp_ocfDrvDsaSign(struct cryptkop *krp)
|
|
{
|
|
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
|
CpaCyDsaRSSignOpData *dsaRsSignOpData = NULL;
|
|
void *callbackTag = NULL;
|
|
CpaCyRandGenOpData randGenOpData;
|
|
int primeQSizeInBytes = 0;
|
|
int doCheck = 0;
|
|
CpaFlatBuffer randData;
|
|
CpaBoolean protocolStatus = CPA_FALSE;
|
|
CpaFlatBuffer *pR = NULL;
|
|
CpaFlatBuffer *pS = NULL;
|
|
|
|
callbackTag = krp;
|
|
|
|
BITS_TO_BYTES(primeQSizeInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX].
|
|
crp_nbits);
|
|
|
|
if (DSA_RS_SIGN_PRIMEQ_SIZE_IN_BYTES != primeQSizeInBytes) {
|
|
APRINTK("%s(): DSA PRIME Q size not equal to the "
|
|
"FIPS defined 20bytes, = %d\n",
|
|
__FUNCTION__, primeQSizeInBytes);
|
|
krp->krp_status = EDOM;
|
|
return EDOM;
|
|
}
|
|
|
|
dsaRsSignOpData = kmem_cache_zalloc(drvDSARSSign_zone, GFP_KERNEL);
|
|
if (NULL == dsaRsSignOpData) {
|
|
APRINTK("%s():Failed to get memory"
|
|
" for DSA RS Sign Op data struct\n", __FUNCTION__);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
dsaRsSignOpData->K.pData =
|
|
kmem_cache_alloc(drvDSARSSignKValue_zone, GFP_ATOMIC);
|
|
|
|
if (NULL == dsaRsSignOpData->K.pData) {
|
|
APRINTK("%s():Failed to get memory"
|
|
" for DSA RS Sign Op Random value\n", __FUNCTION__);
|
|
kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
pR = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL);
|
|
if (NULL == pR) {
|
|
APRINTK("%s():Failed to get memory"
|
|
" for DSA signature R\n", __FUNCTION__);
|
|
kmem_cache_free(drvDSARSSignKValue_zone,
|
|
dsaRsSignOpData->K.pData);
|
|
kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
pS = kmem_cache_zalloc(drvFlatBuffer_zone, GFP_KERNEL);
|
|
if (NULL == pS) {
|
|
APRINTK("%s():Failed to get memory"
|
|
" for DSA signature S\n", __FUNCTION__);
|
|
icp_ocfDrvFreeFlatBuffer(pR);
|
|
kmem_cache_free(drvDSARSSignKValue_zone,
|
|
dsaRsSignOpData->K.pData);
|
|
kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
/*link prime number parameter for ease of processing */
|
|
dsaRsSignOpData->P.pData =
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_P_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaRsSignOpData->P.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_P_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(dsaRsSignOpData->P.pData,
|
|
dsaRsSignOpData->P.dataLenInBytes);
|
|
|
|
dsaRsSignOpData->Q.pData =
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaRsSignOpData->Q.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_PRIME_Q_INDEX].
|
|
crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(dsaRsSignOpData->Q.pData,
|
|
dsaRsSignOpData->Q.dataLenInBytes);
|
|
|
|
/*generate random number with equal buffer size to Prime value Q,
|
|
but value less than Q */
|
|
dsaRsSignOpData->K.dataLenInBytes = dsaRsSignOpData->Q.dataLenInBytes;
|
|
|
|
randGenOpData.generateBits = CPA_TRUE;
|
|
randGenOpData.lenInBytes = dsaRsSignOpData->K.dataLenInBytes;
|
|
|
|
icp_ocfDrvPtrAndLenToFlatBuffer(dsaRsSignOpData->K.pData,
|
|
dsaRsSignOpData->K.dataLenInBytes,
|
|
&randData);
|
|
|
|
doCheck = 0;
|
|
while (icp_ocfDrvCheckALessThanB(&(dsaRsSignOpData->K),
|
|
&(dsaRsSignOpData->Q), &doCheck)) {
|
|
|
|
if (CPA_STATUS_SUCCESS
|
|
!= cpaCyRandGen(CPA_INSTANCE_HANDLE_SINGLE,
|
|
NULL, NULL, &randGenOpData, &randData)) {
|
|
APRINTK("%s(): ERROR - Failed to generate DSA RS Sign K"
|
|
"value\n", __FUNCTION__);
|
|
icp_ocfDrvFreeFlatBuffer(pS);
|
|
icp_ocfDrvFreeFlatBuffer(pR);
|
|
kmem_cache_free(drvDSARSSignKValue_zone,
|
|
dsaRsSignOpData->K.pData);
|
|
kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData);
|
|
krp->krp_status = EAGAIN;
|
|
return EAGAIN;
|
|
}
|
|
|
|
doCheck++;
|
|
if (DSA_SIGN_RAND_GEN_VAL_CHECK_MAX_ITERATIONS == doCheck) {
|
|
APRINTK("%s(): ERROR - Failed to find DSA RS Sign K "
|
|
"value less than Q value\n", __FUNCTION__);
|
|
icp_ocfDrvFreeFlatBuffer(pS);
|
|
icp_ocfDrvFreeFlatBuffer(pR);
|
|
kmem_cache_free(drvDSARSSignKValue_zone,
|
|
dsaRsSignOpData->K.pData);
|
|
kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData);
|
|
krp->krp_status = EAGAIN;
|
|
return EAGAIN;
|
|
}
|
|
|
|
}
|
|
/*Rand Data - no need to swap bytes for pK */
|
|
|
|
/* Link parameters */
|
|
dsaRsSignOpData->G.pData =
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_G_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaRsSignOpData->G.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_G_INDEX].crp_nbits);
|
|
|
|
icp_ocfDrvSwapBytes(dsaRsSignOpData->G.pData,
|
|
dsaRsSignOpData->G.dataLenInBytes);
|
|
|
|
dsaRsSignOpData->X.pData =
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_X_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaRsSignOpData->X.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_X_INDEX].crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaRsSignOpData->X.pData,
|
|
dsaRsSignOpData->X.dataLenInBytes);
|
|
|
|
dsaRsSignOpData->M.pData =
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_DGST_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaRsSignOpData->M.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_DGST_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaRsSignOpData->M.pData,
|
|
dsaRsSignOpData->M.dataLenInBytes);
|
|
|
|
/* Output Parameters */
|
|
pS->pData = krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_S_RESULT_INDEX].crp_p;
|
|
BITS_TO_BYTES(pS->dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_S_RESULT_INDEX].
|
|
crp_nbits);
|
|
|
|
pR->pData = krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_R_RESULT_INDEX].crp_p;
|
|
BITS_TO_BYTES(pR->dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_SIGN_KRP_PARAM_R_RESULT_INDEX].
|
|
crp_nbits);
|
|
|
|
lacStatus = cpaCyDsaSignRS(CPA_INSTANCE_HANDLE_SINGLE,
|
|
icp_ocfDrvDsaRSSignCallBack,
|
|
callbackTag, dsaRsSignOpData,
|
|
&protocolStatus, pR, pS);
|
|
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): DSA RS Sign Operation failed (%d).\n",
|
|
__FUNCTION__, lacStatus);
|
|
krp->krp_status = ECANCELED;
|
|
icp_ocfDrvFreeFlatBuffer(pS);
|
|
icp_ocfDrvFreeFlatBuffer(pR);
|
|
kmem_cache_free(drvDSARSSignKValue_zone,
|
|
dsaRsSignOpData->K.pData);
|
|
kmem_cache_free(drvDSARSSign_zone, dsaRsSignOpData);
|
|
}
|
|
|
|
return lacStatus;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvDsaVerify
|
|
*
|
|
* Description : This function will map DSA RS Verify from OCF to the LAC API.
|
|
*
|
|
*/
|
|
static int icp_ocfDrvDsaVerify(struct cryptkop *krp)
|
|
{
|
|
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
|
CpaCyDsaVerifyOpData *dsaVerifyOpData = NULL;
|
|
void *callbackTag = NULL;
|
|
CpaBoolean verifyStatus = CPA_FALSE;
|
|
|
|
callbackTag = krp;
|
|
|
|
dsaVerifyOpData = kmem_cache_zalloc(drvDSAVerify_zone, GFP_KERNEL);
|
|
if (NULL == dsaVerifyOpData) {
|
|
APRINTK("%s():Failed to get memory"
|
|
" for DSA Verify Op data struct\n", __FUNCTION__);
|
|
krp->krp_status = ENOMEM;
|
|
return ENOMEM;
|
|
}
|
|
|
|
/* Link parameters */
|
|
dsaVerifyOpData->P.pData =
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_P_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaVerifyOpData->P.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_P_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaVerifyOpData->P.pData,
|
|
dsaVerifyOpData->P.dataLenInBytes);
|
|
|
|
dsaVerifyOpData->Q.pData =
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_Q_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaVerifyOpData->Q.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PRIME_Q_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaVerifyOpData->Q.pData,
|
|
dsaVerifyOpData->Q.dataLenInBytes);
|
|
|
|
dsaVerifyOpData->G.pData =
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_G_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaVerifyOpData->G.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_G_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaVerifyOpData->G.pData,
|
|
dsaVerifyOpData->G.dataLenInBytes);
|
|
|
|
dsaVerifyOpData->Y.pData =
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PUBKEY_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaVerifyOpData->Y.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_PUBKEY_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaVerifyOpData->Y.pData,
|
|
dsaVerifyOpData->Y.dataLenInBytes);
|
|
|
|
dsaVerifyOpData->M.pData =
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_DGST_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaVerifyOpData->M.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_DGST_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaVerifyOpData->M.pData,
|
|
dsaVerifyOpData->M.dataLenInBytes);
|
|
|
|
dsaVerifyOpData->R.pData =
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_R_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaVerifyOpData->R.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_R_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaVerifyOpData->R.pData,
|
|
dsaVerifyOpData->R.dataLenInBytes);
|
|
|
|
dsaVerifyOpData->S.pData =
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_S_INDEX].crp_p;
|
|
BITS_TO_BYTES(dsaVerifyOpData->S.dataLenInBytes,
|
|
krp->krp_param[ICP_DSA_VERIFY_KRP_PARAM_SIG_S_INDEX].
|
|
crp_nbits);
|
|
icp_ocfDrvSwapBytes(dsaVerifyOpData->S.pData,
|
|
dsaVerifyOpData->S.dataLenInBytes);
|
|
|
|
lacStatus = cpaCyDsaVerify(CPA_INSTANCE_HANDLE_SINGLE,
|
|
icp_ocfDrvDsaVerifyCallBack,
|
|
callbackTag, dsaVerifyOpData, &verifyStatus);
|
|
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): DSA Verify Operation failed (%d).\n",
|
|
__FUNCTION__, lacStatus);
|
|
kmem_cache_free(drvDSAVerify_zone, dsaVerifyOpData);
|
|
krp->krp_status = ECANCELED;
|
|
}
|
|
|
|
return lacStatus;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvReadRandom
|
|
*
|
|
* Description : This function will map RNG functionality calls from OCF
|
|
* to the LAC API.
|
|
*/
|
|
int icp_ocfDrvReadRandom(void *arg, uint32_t * buf, int maxwords)
|
|
{
|
|
CpaStatus lacStatus = CPA_STATUS_SUCCESS;
|
|
CpaCyRandGenOpData randGenOpData;
|
|
CpaFlatBuffer randData;
|
|
|
|
if (NULL == buf) {
|
|
APRINTK("%s(): Invalid input parameters\n", __FUNCTION__);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* maxwords here is number of integers to generate data for */
|
|
randGenOpData.generateBits = CPA_TRUE;
|
|
|
|
randGenOpData.lenInBytes = maxwords * sizeof(uint32_t);
|
|
|
|
icp_ocfDrvPtrAndLenToFlatBuffer((Cpa8U *) buf,
|
|
randGenOpData.lenInBytes, &randData);
|
|
|
|
lacStatus = cpaCyRandGen(CPA_INSTANCE_HANDLE_SINGLE,
|
|
NULL, NULL, &randGenOpData, &randData);
|
|
if (CPA_STATUS_SUCCESS != lacStatus) {
|
|
EPRINTK("%s(): icp_LacSymRandGen failed (%d). \n",
|
|
__FUNCTION__, lacStatus);
|
|
return RETURN_RAND_NUM_GEN_FAILED;
|
|
}
|
|
|
|
return randGenOpData.lenInBytes / sizeof(uint32_t);
|
|
}
|
|
|
|
/* Name : icp_ocfDrvDhP1Callback
|
|
*
|
|
* Description : When this function returns it signifies that the LAC
|
|
* component has completed the DH operation.
|
|
*/
|
|
static void
|
|
icp_ocfDrvDhP1CallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData, CpaFlatBuffer * pLocalOctetStringPV)
|
|
{
|
|
struct cryptkop *krp = NULL;
|
|
CpaCyDhPhase1KeyGenOpData *pPhase1OpData = NULL;
|
|
|
|
if (NULL == callbackTag) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"callbackTag data is NULL\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
krp = (struct cryptkop *)callbackTag;
|
|
|
|
if (NULL == pOpData) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"Operation Data is NULL\n", __FUNCTION__);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
pPhase1OpData = (CpaCyDhPhase1KeyGenOpData *) pOpData;
|
|
|
|
if (NULL == pLocalOctetStringPV) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"pLocalOctetStringPV Data is NULL\n", __FUNCTION__);
|
|
memset(pPhase1OpData, 0, sizeof(CpaCyDhPhase1KeyGenOpData));
|
|
kmem_cache_free(drvDH_zone, pPhase1OpData);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
|
|
if (CPA_STATUS_SUCCESS == status) {
|
|
krp->krp_status = CRYPTO_OP_SUCCESS;
|
|
} else {
|
|
APRINTK("%s(): Diffie Hellman Phase1 Key Gen failed - "
|
|
"Operation Status = %d\n", __FUNCTION__, status);
|
|
krp->krp_status = ECANCELED;
|
|
}
|
|
|
|
icp_ocfDrvSwapBytes(pLocalOctetStringPV->pData,
|
|
pLocalOctetStringPV->dataLenInBytes);
|
|
|
|
icp_ocfDrvFreeFlatBuffer(pLocalOctetStringPV);
|
|
memset(pPhase1OpData, 0, sizeof(CpaCyDhPhase1KeyGenOpData));
|
|
kmem_cache_free(drvDH_zone, pPhase1OpData);
|
|
|
|
crypto_kdone(krp);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvModExpCallBack
|
|
*
|
|
* Description : When this function returns it signifies that the LAC
|
|
* component has completed the Mod Exp operation.
|
|
*/
|
|
static void
|
|
icp_ocfDrvModExpCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpdata, CpaFlatBuffer * pResult)
|
|
{
|
|
struct cryptkop *krp = NULL;
|
|
CpaCyLnModExpOpData *pLnModExpOpData = NULL;
|
|
|
|
if (NULL == callbackTag) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"callbackTag data is NULL\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
krp = (struct cryptkop *)callbackTag;
|
|
|
|
if (NULL == pOpdata) {
|
|
DPRINTK("%s(): Invalid Mod Exp input parameters - "
|
|
"Operation Data is NULL\n", __FUNCTION__);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
pLnModExpOpData = (CpaCyLnModExpOpData *) pOpdata;
|
|
|
|
if (NULL == pResult) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"pResult data is NULL\n", __FUNCTION__);
|
|
krp->krp_status = ECANCELED;
|
|
memset(pLnModExpOpData, 0, sizeof(CpaCyLnModExpOpData));
|
|
kmem_cache_free(drvLnModExp_zone, pLnModExpOpData);
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
|
|
if (CPA_STATUS_SUCCESS == status) {
|
|
krp->krp_status = CRYPTO_OP_SUCCESS;
|
|
} else {
|
|
APRINTK("%s(): LAC Mod Exp Operation failed - "
|
|
"Operation Status = %d\n", __FUNCTION__, status);
|
|
krp->krp_status = ECANCELED;
|
|
}
|
|
|
|
icp_ocfDrvSwapBytes(pResult->pData, pResult->dataLenInBytes);
|
|
|
|
/*switch base size value back to original */
|
|
if (pLnModExpOpData->base.pData ==
|
|
(uint8_t *) & (krp->
|
|
krp_param[ICP_MOD_EXP_KRP_PARAM_BASE_INDEX].
|
|
crp_nbits)) {
|
|
*((uint32_t *) pLnModExpOpData->base.pData) =
|
|
ntohl(*((uint32_t *) pLnModExpOpData->base.pData));
|
|
}
|
|
icp_ocfDrvFreeFlatBuffer(pResult);
|
|
memset(pLnModExpOpData, 0, sizeof(CpaCyLnModExpOpData));
|
|
kmem_cache_free(drvLnModExp_zone, pLnModExpOpData);
|
|
|
|
crypto_kdone(krp);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Name : icp_ocfDrvModExpCRTCallBack
|
|
*
|
|
* Description : When this function returns it signifies that the LAC
|
|
* component has completed the Mod Exp CRT operation.
|
|
*/
|
|
static void
|
|
icp_ocfDrvModExpCRTCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData, CpaFlatBuffer * pOutputData)
|
|
{
|
|
struct cryptkop *krp = NULL;
|
|
CpaCyRsaDecryptOpData *pDecryptData = NULL;
|
|
|
|
if (NULL == callbackTag) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"callbackTag data is NULL\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
krp = (struct cryptkop *)callbackTag;
|
|
|
|
if (NULL == pOpData) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"Operation Data is NULL\n", __FUNCTION__);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
pDecryptData = (CpaCyRsaDecryptOpData *) pOpData;
|
|
|
|
if (NULL == pOutputData) {
|
|
DPRINTK("%s(): Invalid input parameter - "
|
|
"pOutputData is NULL\n", __FUNCTION__);
|
|
memset(pDecryptData->pRecipientPrivateKey, 0,
|
|
sizeof(CpaCyRsaPrivateKey));
|
|
kmem_cache_free(drvRSAPrivateKey_zone,
|
|
pDecryptData->pRecipientPrivateKey);
|
|
memset(pDecryptData, 0, sizeof(CpaCyRsaDecryptOpData));
|
|
kmem_cache_free(drvRSADecrypt_zone, pDecryptData);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
|
|
if (CPA_STATUS_SUCCESS == status) {
|
|
krp->krp_status = CRYPTO_OP_SUCCESS;
|
|
} else {
|
|
APRINTK("%s(): LAC Mod Exp CRT operation failed - "
|
|
"Operation Status = %d\n", __FUNCTION__, status);
|
|
krp->krp_status = ECANCELED;
|
|
}
|
|
|
|
icp_ocfDrvSwapBytes(pOutputData->pData, pOutputData->dataLenInBytes);
|
|
|
|
icp_ocfDrvFreeFlatBuffer(pOutputData);
|
|
memset(pDecryptData->pRecipientPrivateKey, 0,
|
|
sizeof(CpaCyRsaPrivateKey));
|
|
kmem_cache_free(drvRSAPrivateKey_zone,
|
|
pDecryptData->pRecipientPrivateKey);
|
|
memset(pDecryptData, 0, sizeof(CpaCyRsaDecryptOpData));
|
|
kmem_cache_free(drvRSADecrypt_zone, pDecryptData);
|
|
|
|
crypto_kdone(krp);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvDsaRSSignCallBack
|
|
*
|
|
* Description : When this function returns it signifies that the LAC
|
|
* component has completed the DSA RS sign operation.
|
|
*/
|
|
static void
|
|
icp_ocfDrvDsaRSSignCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData,
|
|
CpaBoolean protocolStatus,
|
|
CpaFlatBuffer * pR, CpaFlatBuffer * pS)
|
|
{
|
|
struct cryptkop *krp = NULL;
|
|
CpaCyDsaRSSignOpData *pSignData = NULL;
|
|
|
|
if (NULL == callbackTag) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"callbackTag data is NULL\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
krp = (struct cryptkop *)callbackTag;
|
|
|
|
if (NULL == pOpData) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"Operation Data is NULL\n", __FUNCTION__);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
pSignData = (CpaCyDsaRSSignOpData *) pOpData;
|
|
|
|
if (NULL == pR) {
|
|
DPRINTK("%s(): Invalid input parameter - "
|
|
"pR sign is NULL\n", __FUNCTION__);
|
|
icp_ocfDrvFreeFlatBuffer(pS);
|
|
kmem_cache_free(drvDSARSSign_zone, pSignData);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
|
|
if (NULL == pS) {
|
|
DPRINTK("%s(): Invalid input parameter - "
|
|
"pS sign is NULL\n", __FUNCTION__);
|
|
icp_ocfDrvFreeFlatBuffer(pR);
|
|
kmem_cache_free(drvDSARSSign_zone, pSignData);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
|
|
if (CPA_STATUS_SUCCESS != status) {
|
|
APRINTK("%s(): LAC DSA RS Sign operation failed - "
|
|
"Operation Status = %d\n", __FUNCTION__, status);
|
|
krp->krp_status = ECANCELED;
|
|
} else {
|
|
krp->krp_status = CRYPTO_OP_SUCCESS;
|
|
|
|
if (CPA_TRUE != protocolStatus) {
|
|
DPRINTK("%s(): LAC DSA RS Sign operation failed due "
|
|
"to protocol error\n", __FUNCTION__);
|
|
krp->krp_status = EIO;
|
|
}
|
|
}
|
|
|
|
/* Swap bytes only when the callback status is successful and
|
|
protocolStatus is set to true */
|
|
if (CPA_STATUS_SUCCESS == status && CPA_TRUE == protocolStatus) {
|
|
icp_ocfDrvSwapBytes(pR->pData, pR->dataLenInBytes);
|
|
icp_ocfDrvSwapBytes(pS->pData, pS->dataLenInBytes);
|
|
}
|
|
|
|
icp_ocfDrvFreeFlatBuffer(pR);
|
|
icp_ocfDrvFreeFlatBuffer(pS);
|
|
memset(pSignData->K.pData, 0, pSignData->K.dataLenInBytes);
|
|
kmem_cache_free(drvDSARSSignKValue_zone, pSignData->K.pData);
|
|
memset(pSignData, 0, sizeof(CpaCyDsaRSSignOpData));
|
|
kmem_cache_free(drvDSARSSign_zone, pSignData);
|
|
crypto_kdone(krp);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Name : icp_ocfDrvDsaVerifyCallback
|
|
*
|
|
* Description : When this function returns it signifies that the LAC
|
|
* component has completed the DSA Verify operation.
|
|
*/
|
|
static void
|
|
icp_ocfDrvDsaVerifyCallBack(void *callbackTag,
|
|
CpaStatus status,
|
|
void *pOpData, CpaBoolean verifyStatus)
|
|
{
|
|
|
|
struct cryptkop *krp = NULL;
|
|
CpaCyDsaVerifyOpData *pVerData = NULL;
|
|
|
|
if (NULL == callbackTag) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"callbackTag data is NULL\n", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
krp = (struct cryptkop *)callbackTag;
|
|
|
|
if (NULL == pOpData) {
|
|
DPRINTK("%s(): Invalid input parameters - "
|
|
"Operation Data is NULL\n", __FUNCTION__);
|
|
krp->krp_status = ECANCELED;
|
|
crypto_kdone(krp);
|
|
return;
|
|
}
|
|
pVerData = (CpaCyDsaVerifyOpData *) pOpData;
|
|
|
|
if (CPA_STATUS_SUCCESS != status) {
|
|
APRINTK("%s(): LAC DSA Verify operation failed - "
|
|
"Operation Status = %d\n", __FUNCTION__, status);
|
|
krp->krp_status = ECANCELED;
|
|
} else {
|
|
krp->krp_status = CRYPTO_OP_SUCCESS;
|
|
|
|
if (CPA_TRUE != verifyStatus) {
|
|
DPRINTK("%s(): DSA signature invalid\n", __FUNCTION__);
|
|
krp->krp_status = EIO;
|
|
}
|
|
}
|
|
|
|
/* Swap bytes only when the callback status is successful and
|
|
verifyStatus is set to true */
|
|
/*Just swapping back the key values for now. Possibly all
|
|
swapped buffers need to be reverted */
|
|
if (CPA_STATUS_SUCCESS == status && CPA_TRUE == verifyStatus) {
|
|
icp_ocfDrvSwapBytes(pVerData->R.pData,
|
|
pVerData->R.dataLenInBytes);
|
|
icp_ocfDrvSwapBytes(pVerData->S.pData,
|
|
pVerData->S.dataLenInBytes);
|
|
}
|
|
|
|
memset(pVerData, 0, sizeof(CpaCyDsaVerifyOpData));
|
|
kmem_cache_free(drvDSAVerify_zone, pVerData);
|
|
crypto_kdone(krp);
|
|
|
|
return;
|
|
}
|